
Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

1 de 10 12/01/09 11:35

Steve Friedl's Unixwiz.net Tech Tips

Secure Linux/UNIX access with PuTTY and
OpenSSH

Table of Contents

Installation and config1.

Multiple sessions2.

Create keypair3.

Connect with a key4.

Disabling password auth5.

Enabling SSH Agent Support6.

Agent Forwarding7.

Copying files securely8.

Security Concerns9.

Related Resources 10.

Many users have implemented Secure Shell (ssh)
to provide protected access to a remote Linux
system, but don't realize that by allowing
password authentication, they are still open to
brute-force attacks from anywhere on the
internet. There are worms running rampant on
the internet which do an effective job finding
weak username/password combinations, and
these are not stopped by the use of Secure Shell.

This Tech Tip details how to use the free PuTTY SSH client to connect
to a Linux system running the OpenSSH server, all while using public
key encryption and SSH agent support.

Much of this information applies to any OpenSSH installation on any
UNIX system - Solaris, *BSD, OpenServer - but we've targetted this
to the Linux platform when specifics are called for.

Installation and simple config/login

Providing for full passwordless, agent-based access requires a lot of steps, so we'll approach this in
steps by first providing for regular passworded access to the system. This allows for testing of the
initial installation and the ability to login before enabling the more advanced features.

Download and install the programs

Unlike most Windows programs, the PuTTY suite does not require an installer: the individual .EXE files
are simply dropped into a directory where they are run directly. We admire the economy and style
which PuTTY's author demonstrates.

The files can be dropped into any directory which is in the user's command path, and we normally use
C:\BIN (see the next item for how configure this).

Five files should be downloaded from the PuTTY site:
PuTTY.exe — Secure Shell client

PuTTYgen.exe — SSH public/private key generator

Pagent.exe — SSH key agent

PSCP.exe — Secure Copy from command line

PSFTP.exe — Secure Copy with FTP-like interface

Insure the installation directory is in the command path

Though it's possible to run PuTTY with a
full path or shortcut, in practice it's
helpful when it's fully available at the
CMD prompt to access or copy files from
anywhere in the filesystem.

Right-click on My Computer on the
desktop and select Properties. Click
the Advanced tab at the top, then click
the Environment Variables button.
This brings up the dialog box shown on
the right.

There is always PATH variable in the
"System Variables" section, and
sometimes in the "User Variables"
section as well. Only administrators
have access to System Variables, so

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

2 de 10 12/01/09 11:35

Edit or Add the PATH as required.

We typically put the new directory at
the start of the path, and it's separated
from the rest of the list with a
semicolon. Click OK to save all the
changes.

Create a shortcut on the desktop

PuTTY is often used heavily by an IT worker, so it's helpful to have a shortcut on the desktop
to make for easy access. To add this, right-click on the desktop and click New + Shortcut.
Either Browse to, or type in the name of, the path of the PuTTY executable. In our example,
it's been C:\bin\putty.exe. Click OK and give the shortcut a convenient name.

Launch PuTTY and configure for the target system

Launch PuTTY via the shortcut,
and it will display the
configuration dialog box: there
are many options here. We'll fill
in several to provide for
passworded access to the
system, then configure for
public-key access later.

Category:

Hostname: dbserver

Protocol: (*) SSH

Connection : Data

Auto-login username: steve

Connection : SSH

Preferred SSH Protocol Version: (*) 2 Only

Once these simple settings have
been entered, they can be saved
to make for easy access next
time. Click Session on the left,
then enter a name in Saved
Sessions - this name will
usually be related to the
machine you're connecting to.
Click Save to store these
settings in the Registry: we've
chosen the name Database
server.

Login!

With the saved settings from the previous step, we'd like to use them to connect to the target system.
Launch PuTTY (if not already open), and in the Session section, click on the name of the saved
session and click Load. Click Open to launch the connection.

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

3 de 10 12/01/09 11:35

When prompted, enter the password for your account on the remote system, and if correct, you'll
receive a shell. Now you may begin working on the system.

However - every time PuTTY connects
with a server, it exchanges identification in
the form of host keys. If the host key is
unknown, or doesn't match what we've
seen previously, it warns the user. For
unknown hosts, this is mostly a pro forma
operation, but for previously-known
systems it may suggest that the host is not
the same one as originally connected.

Host keys which have changed without
warning can occur when the target
operating system is reinstalled without
restoring the host keys from backup, or it
could be something more nefarious such
as a rogue host masquerading as the
genuine one.

One should always inquire into
unexpectedly-changed host keys

Creating and using multiple sessions

When the user only needs to connect with one system, it's possible to program in these parameters
into the Default Session, but it's much more common to access multiple systems. With a bit of setup,
we can easily create and connect to these systems with one click.

Create and save the sessions

As we did in the previous section, create and
save as many named sessions as needed, and
make a note of the session names. These
names can be referenced on the command
line with the -load parameter, and can be
embedded into the shortcut.

Right-click on the shortcut and select
Properties, then enter the parameter -load
along with the name of the session (in
quotes, if necessary). Click OK to save the
shortcut properties.

It's also a good idea to rename the
shortcut to reflect the name of the
server it's connecting to: right-click
on the shortcut and select Rename.

Once the session shortcut is fully
configured, double-clicking the icon
launches the connection. Create as

many pre-programmed shortcuts as needed.

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

4 de 10 12/01/09 11:35

Create and install a public/private
keypair

The real power of Secure Shell comes into play when public/private keys are used. Unlike password
authentication, public key access is done by performing a one-time creation of a pair of very long
binary numbers which are mathematically related.

The initial configuration step is moderately involved, but need be done only once: once created, the
key can be easily installed on as many remote systems as desired.

Run PuTTYgen

A pair of public/private keys
— small files containing very
large binary numbers — is
required, and PuTTYgen
does this. It's run just one
time to create a personal
pair of keys, which are then
installed wherever needed.

Click Start, then Run, then
enter puttygen in the
command-line box. This
displays the main dialog
box, shown on the right.
Select the key parameters
as shown, then click
Generate. One can choose
either an RSA or a DSA key
(we don't believe the
difference is terribly
significant), but do not
create an SSH version 1 key
of any kind: they're not
secure.

You'll be prompted to create some randomness by moving the mouse around: this gives the system
some additional entropy which helps create better keys. This takes just a few seconds to fully
generate the keypair.

Protect and save the
keys

Now the keypair has been
generated, but exists only in
PuTTYgen's memory: it has
to be saved to disk to be of
any use. Though the public
key contains no sensitive
information and will be
installed on remote systems,
the private key must be
protected vigorously:
anyone knowing the private
key has full run of all remote
systems.

The private key is typically
protected with a passphrase,
and this phrase is entered
twice in the fields indicated.
The comment is optional but
is customarily the email
address of the key owner. It
could also just be the
owner's name.

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

5 de 10 12/01/09 11:35

Do not forget the
passphrase; the keypair is useless without it.

The key generated must now be saved, and this is done in three parts: Save Public Key and Save
Private Key both prompt for a filename, and the private key (with .ppk extension) should be saved
in a safe place.

The public key is in a standard format and can be used directly or indirectly by other software, and it
looks like this:

---- BEGIN SSH2 PUBLIC KEY ----
Comment: "steve@unixwiz.net"
AAAAB3NzaC1yc2EAAAABJQAAAIBtZzfrF2AOpwvvU/0ikNgOsFWfP9zW8GlT5iGg
c487S3ooA+OY0u882r8/T/dwc6EHJM+QhRdTlv1NBLCmz46R4F5draFhibHEWuKA
Qg/UutZbMkC6rpd0H2DBXTTCcZ2y4FL3u5kOV1+XWqmmII568+/twEGAO6MS0HDv
OYK+BQ==
---- END SSH2 PUBLIC KEY ----

The private key is in a PuTTY-specific format which can't be used by any other software. It won't ever
be looked at directly by the operator.

Install public key on Linux system

With puttygen still open,
highlight the entire "Public
Key for pasting into
OpenSSH authorized_keys
file" area and type control-C
to copy to the local system's
clipboard. This is essentially
the same data as found in
the saved public-key file,
but it's in a form which can
be directly used on the Linux
system.

Login to the Linux computer
using the account's
password, create the .ssh
directory if necessary, then
edit the file
.ssh/authorized_keys2. This will be a text file, and the clipboard should be pasted into it. Note: the
file authorized_keys is for an older format; we're using authorized_keys2.

The public key will be just one long line, and it's really easy to paste the data in a way which truncates
the first few characters. This renders the key inoperable, so be sure that the key begins ssh-rsa or
ssh-dsa. Save the file.

Insure that both the .ssh directory and the files within it are readable only by the current user (this is
a security precaution), and this can be achieved using the chmod command with parameters applying
to the entire directory:

$ mkdir $HOME/.ssh

$ chmod -R og= $HOME/.ssh

Log out of the system.

Note - the authorized_keys2 file must be owned by the user and unreadable/unwritable by anybody
else - the OpenSSH server will deny logins if this is not the case. One can check this with the ls
command:

$ ls -lR $HOME/.ssh
/home/steve/.ssh:

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

6 de 10 12/01/09 11:35

total 16
drwx------ 2 steve steve 4096 Nov 22 13:11 ./
drwx------ 6 steve steve 4096 Nov 22 16:10 ../
-rw------- 1 steve steve 460 Nov 22 13:11 authorized_keys2

The file must be mode -rw-------.

Attach the private key to the SSH session

Now that the public/private
keypair has been created, it can
be associated with an SSH
session. First, we'll do this in
PuTTY by launching the program
and loading the session of
interest.

Navigate to Connection : SSH :
Auth in the Category pane on
the left, then populate the
Private key file for
authentication field by
browsing to the .ppk file saved
previously.

Note - With other Secure Shell
clients, we've seen the ability to
attach a private key to all
sessions (as part of a global
configuration), but with PuTTY it
appears to require configuration
for each session. We're not sure
why.

Return to the Session category
level and save the current
session.

At this point, PuTTY (on
Windows) and OpenSSH (on
Linux) are both configured for
secure, public-key access.

Connect via the public key

Now that the configuration steps have been completed, we're ready to actually login using the public
key mechanism, completely avoiding the password step.

Connect securely

Launch PuTTY with options to load the saved session with the private key:

Rather than prompt for the account's password (which will differ on every remote system), it's instead
asking for the passphrase which is protecting the local private key. When the private key fits into the
public key on the OpenSSH server, access granted and a shell presented to the user.

It's important to note that though the user must type a secret word when logging in, the passphrase
is associated with the local private key, not the remote account. Even if the user's public key is
installed on 1,000 different remote servers, the same private-key passphrase is demanded for all of
them. This greatly simplifies the task of remembering access credentials and encourages the choosing
of strong, secure ones.

Disabling password authentication on OpenSSH

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

7 de 10 12/01/09 11:35

Once the user's public and private keypair are verified as correct, it's possible to disable password
authentication on the Linux server entirely. This entirely forestalls all possible password-guessing
attempts and dramatically secures a machine.

However, for machines not physically local, it's wise to defer on disabling password authentication until
it's absolutely clear that the keyed access is working properly, especially if multiple users are
involved. Once password authentication has been disabled, even the root password won't allow one
into the system.

Those new to public key access are encouraged to test very carefully.

The configuration of the SSH Daemon is found in the sshd_config file, often stored in the /etc/ssh/
directory. This is a text file which is relatively easy to read; we'll be looking for two entries to modify.

First is to set PasswordAuthentication to the value no. This may be explicitly set to yes, or it may
be commented out to rely on the default, but we wish to explicitly disable this:

Second, we wish to disable SSH protocol version 1: this is old, has several substantial security
weaknesses, and should not be allowed from the outside world.

Edit the configuration file and ensure that the two keyword entries are set properly; comment out the
old entries if necessary.

/etc/ssh/sshd_config

Protocol 1,2
Protocol 2
PasswordAuthentication no

Once the configuration file has been saved, the Secure Shell daemon must be restarted; on most
platforms this can be done with the "service" mechanism:

service sshd restart

This kills the listening daemon and restarts it, but does not terminate any existing individual user
sessions. Those who feel this might be a risky step are invited to simply reboot the machine.

At this point, OpenSSH will no longer accept passwords of any kind, with access granted only for users
with pre-established public keys.

Enabling SSH Agent Support

Up to this point, we've provided a large manner of security of system access, but it's still not terribly
convenient: we still must type a (hopefully) complex pass phrase each time. This can get tedious when
large numbers of systems are involved.

Fortunately, the SSH suite provides a wonderful mechanism for unlocking the private key once, and
allowing individual ssh connections to piggyback on it without querying for the passphrase every time.

Launch the agent

Navigate to and launch the pageant.exe program from the same location as the other PuTTY-related
files, and it will put itself into the system tray (in the lower right near the clock).

Double-click the icon in the tray, and it launches a dialog box with an empty
list of keys. Click Add Key and navigate to the .ppk file which contains
your private key. When prompted for the passphrase, enter it and click OK.
Click Close to dismiss the agent.

Now, launch one of the already-configured SSH sessions to a
pubkey-secured remote host: it will query the agent for the private key,
exchange it with the remote, and grant access without further user
intervention.

Note - the thoughtful reader may wonder just how the agent stores the data, and whether untrusted
programs are able to obtain this secret key surreptitiously. We're not sure how it works, but we've not
ever heard of real security concerns on this front. We'll update this document if we learn something.

Preload the private key

The first thing that many PuTTY users do
when logging into the system for the day is to
launch the agent and add the private key.
This is just a few steps, but we can optimize
it just a bit more. If we launch the agent with
the private key file as a parameter, it loads
the key automatically.

Navigate to pageant.exe and right-click to
copy this icon. Paste this as a shortcut on the

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

8 de 10 12/01/09 11:35

desktop, then right-click and select
Properties. Enter the full path of the .ppk
private key file as the parameter, then save
the changes.

Double-clicking this icon will load the keyfile,
demanding the passphrase. Once entered,
that's the last time it's needed as long as the agent sticks around.

There is very little not to like about SSH agent support.

Agent Forwarding

But we've not exhausted the benefits of SSH agent support.

It's a clear win to avoid typing the passphrase every time a new connection is launched, but SSH also
provides Agent Forwarding which can pass the credential down the connection to the remote server.
This credential can then be passed to yet another server where the user's public key has been
installed, obviating passwords or the secret passphrase for the entire duration of a network navigation.

User launches a connection to Server A: PuTTY on the local machine gets the private key from
the agent and provides it to the remote server.

1.

Remote server processes the public and private key
data and grants access. The user is given a shell on
the local system.

2.

User attempts to connect to SystemB with ssh -A
systemb (-A enables agent forwarding), and it
connects to the SSH server there.

3.

System B asks system A for the user's private key
data, and the SSH server on system A in turn forwards
this back to the original workstation where the agent
is queried.

4.

The local agent passes the data back up the
connection, where it's forwarded from SystemA to
SystemB. SystemB receives this credential, and access
is granted by comparing to the public key stored on
that machine for that user.

5.

This happens automatically and quickly: it takes no more than a second or two for the entire exchange
to occur, and this forwarding can go over quite a long chain of SSH connections. This provides for
transparent, secure access to a wide range of remote systems.

Note - All of this requires that the user have an account on each machine in question, and that the
user's public key is installed properly on each one. SSH forwarding doesn't provide any access which
would not be granted absent forwarding; it just adds a more convenient mechanism to what's already
provided.

Enable Forwarding in
PuTTY

Enabling agent forwarding is
done in the PuTTY configuration
dialogs much like all the rest,
and just one additional box need
to be checked.

This option requires, of course,
the use of pageant on the local
system - without an agent,
there's nothing to forward.

Should a key-protected
connection be attempted with no
agent present, PuTTY will simply
prompt for the passphrase as it
has all along (and will do so on
each connection).

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

9 de 10 12/01/09 11:35

Enable Forwarding on the
Server

In the example above, we saw
that the user typed ssh -A
host, but it's common to make
"Use agent forwarding" the
default setting to remove the
need to type the "-A".

The OpenSSH server configuration is found in sshd_config, while the client configuration is in
ssh_config (typically in the /etc/ssh/ directory). The file can be edited and the ForwardAgent
setting set to yes:

/etc/ssh/ssh_config

...
ForwardAgent yes
...

This setting doesn't affect the server, so it requires no reboot or special operation for it to take effect:
the next outbound connection will enable forwarding automatically. This change need be made only
once (and it's the default on some systems).

Note: much more background on this can be found elsewhere on this server: Unixwiz.net Tech Tip: An
Illustrated Guide to SSH Agent Forwarding

Copying files securely

With the configuration of PuTTY, public key access, and agent support (with
forwarding), we're prepared to step beyond terminal shell access and move files
around. Secure Shell provides multiple methods for copying files from one machine to
another, all working together with the same keys and agents.

PSCP allows for command-line copying of files to and from a remote SSH server, and
PSFTP provides an FTP-like interface for convenient file transfer. We'll discuss both.

PSFTP - an FTP-like client

The PSFTP program can be launched from the command line or from a desktop shortcut, and in both
cases accepts either a hostname or a saved session name.

When launched, it connects to the target server (fully taking advantage of public keys and the local
agent, if any), and presents a psftp> prompt:

C> psftp dbserver
Using username "steve".
Remote working directory is /home/steve
psftp>

Regular users of command-line FTP clients will find this familiar, though it's certainly not up to the
ease of use as popular GUI clients. The help command may provide some guidance.

PSCP - Secure Copy

Users at the command line may wish to copy files directly, and this is done with pscp, the Secure
Copy command. Just like copying regular files on the local filesystem, pscp takes a machine name
and directory as a source or destination.

pscp can transfer one file at a time, or a whole set in a single instance:

C> pscp *.gbk dbserver:/db/evolution
CL_100.gbk | 97 kB | 97.4 kB/s | ETA: 00:00:00 | 100%
CL_101.gbk | 68 kB | 68.2 kB/s | ETA: 00:00:00 | 100%
CL_103.gbk | 44 kB | 44.5 kB/s | ETA: 00:00:00 | 100%
CL_110.gbk | 34 kB | 34.6 kB/s | ETA: 00:00:00 | 100%
CL_123.gbk | 45 kB | 45.4 kB/s | ETA: 00:00:00 | 100%

Curiously, the saved session name need not be provided; just the hostname and the current username
(which is usually taken automatically from the environment. It appears that psftp and pscp both
consult the saved-session list, find an appropriate match, and then use the access information
associated. This makes for a smooth file-transfer experience.

Security Concerns and the Finer Points

Secure Linux/UNIX access with PuTTY and OpenSSH http://unixwiz.net/techtips/putty-openssh.html

10 de 10 12/01/09 11:35

Home Stephen J. Friedl Software Consultant Orange County, CA USA

This Tech Tip has intended to provide a fast path to setting up a Secure Shell environment from
workstation to server, but it has skipped over many of the finer points. The whole point of using Secure
Shell is "Security", and we'd be remiss if we didn't touch on some of these points here.

We'll make the broader point that one must take care when working on an untrusted system: when
using advanced features such as agent forwarding or private keys, one is at the mercy of a hostile
operator. Kernel-based keyloggers and Trojaned /bin/ssh binaries are just a few of many obvious
risks when operating in that kind of environment.

Here we'll touch on a few of the non-obvious points and note that in a trusted and controlled
environment, these issues simply don't arise.

Protect your private key

Though the public key is of only minor concern, the private key must be protected vigorously. Anyone
who can get to the decrypted private key (either by learning the passphrase, or brute-forcing it) has
full run of all networks where the public key is installed. We strongly recommend limiting dramatically
the number of places where the private key is kept.

We presume that applications exist which can take a private-key file and attempt to brute-force the
key, though we've not yet run across one.

Agent use requires trusted machines

Whenever an SSH key agent is present, whether it be on the local machine which initiates the
outgoing connection, or on intermediate machines which are forwarding them, it's technically possible
for interlopers on those machines to get access to the secure channel.

In OpenSSH, an ssh client communicates with the agent via a UNIX domain socket under the /tmp/
directory(a representative file is /tmp/ssh-DeB10132/agent.10132), and it's restricted to the
local user. But superusers also have access to the socket, and it's relatively straightforward to hijack
the agent to connect to the same target machine.

Related Resources

Unixwiz.net Tech Tip: Building and configuring OpenSSH

Unixwiz.net Tech Tip: An Illustrated Guide to SSH Agent Forwarding

PuTTY home page

Published: 2005/11/23

